Title

A Program Dossier for IB [Higher/Standard] Level Computer Science

by Name

Concordian International School
Terms of Reference:

A brief statement of the problem as seen by the end-user.

Table of Contents

Analysis of the Problem
3
Criteria for Success
4
Prototype Solution
5
Data Structures
6
Algorithms
7
Modular Organisation
8
Handling Errors
9
Code Listing
10
Annotated Hard Copy
11
Documentation of Mastery Aspects
12
Evaluation of Solutions
14

A1 Analysis of the Problem

This must be completed first and must contain a thorough discussion of the problem that is being solved. It should concentrate on the problem and the goals that are being set, not on the method of solution. A good analysis includes information such as sample data, information and requests from the identified end-user, and possibly some background of how the problem has been solved in the past.

It should include a brief statement of the problem as seen by the end-user, which can be repeated on the front cover as the terms of reference. A discussion of the problem from the end-user’s point of view, including the user’s needs, required input and required output. For example, evidence could be sample data, interviews and so on, and these could be placed in an appendix.

[2-3 pages]

A2 Criteria for Success

This section will clearly state the objectives/goals of your solution to the problem.

Objectives should include minimum performance and usability. These criteria for success are important as they are referred to in later criteria, e.g. Success of the program and Evaluating solutions.

[1 - 2 pages]

A3 Prototype Solution

Start with an initial design for some of the main objectives that you determined to be the criteria for success. A prototype of the solution should then be created (a prototype is a simple version of the solution that is used as part of the design process to demonstrate how the system will work).

The prototype need not be functional; it could be constructed using a number of tools Scratch, Micro Worlds, PowerPoint, Paint, Fireworks, mind map or a simple Java program. The intent is to show the user how the system is expected to operate, what inputs are required and what outputs will be produced. A number of screen shots will be required for the user to be able to evaluate the solution properly. The prototype, at its simplest, could be a series of clear, computer-generated drawings, a hierarchical outline of features in text mode, or a series of screen shots.

Documentation of user feedback could be, for example, a report of the user’s comments on the prototype.

[Variable number of pages]

B1 Data Structures

You should choose data structures, at the design stage, that fully support the data storage requirements of the problem, and that allow clear, efficient algorithms to be written. The data structures must fully support the objectives of the solution (see Criteria for Success). The classes chosen should be logical in that the data is sensible for the objects in question and the methods are appropriate for the data given. This section could include class definitions, file structures, abstract data types (higher level) and some consideration of alternatives.

Data structures and variables that are to be used in the programmed solution should be discussed here. Sample data, sketches/illustrations, including discussion of the way data objects will change during program execution should be demonstrated.

[2 - 5 pages]

B2 Algorithms

You should choose algorithms, at the design stage, that fully support the processes needed to achieve the objectives of the solution (see Criteria for Success), and provide sufficient support for the required data structures. The classes chosen should be logical in that the methods are appropriate for the data

given. You must include the parameters and return values.

This section can be a list or outline of all the algorithms, presented as text, possibly in outline format. Standard algorithms (such as search or sort) can simply be named (with parameters), but non-standard algorithms must be described in more detail.

[2 - 5 pages]

B3 Modular Organisation

You should choose modules (separate areas of the project which may be the the different classes), at the design stage, that incorporate the data structures and methods required for the solution (Data Structures and Algorithms) in a logical way. The data structures must fully support the objectives of the solution (see your Criteria for Success). You must present this organisation in a structured

way that clearly shows connections between modules (hierarchical decomposition or class dependencies, similarly to the way you see them in BlueJ). The connections between modules, algorithms and data structures must also be presented.

A variety of presentations are possible here. Some possibilities are:

· a top-down hierarchical decomposition chart containing the names of modules, showing connections between modules and showing details of which data structures and methods are connected with (or part of) which modules ;

· a text outline showing hierarchical decomposition;

· a hard copy of CRC cards showing dependencies between collaborating classes, with details of which data structures and methods are connected with (or part of) which classes.

This is the end of the design stage, which is assessed independently from the next (programming) stage. Your design should be complete, logical and usable (I will take it in to mark it provisionally), but you may deviate from it or expand it during the next stage, without losing marks.

[3 - 5 pages]

C1 Code Listing

Program listings must contain all the code written by you and, if a program listing displays code that was automatically generated by the development system or copied from another source, then this code must be clearly identified and distinguishable from that code written by you.

Good programming style can be demonstrated by program listings that are easily readable, even by a programmer who has never used the program. These would include small and clearly structured Java methods, sufficient and appropriate comments, meaningful identifier names, use of line numbers and a consistent indentation scheme.

Comments must be included to describe the purpose and parameters of each method, and also when code is difficult to understand.

The program should demonstrate the use of good programming techniques:

· an identification header indicating the program name;

· author, date, school;

· computer used, IDE used, purpose.

The program should possess good internal documentation:

· constant, type and variable declarations that should have explanatory comments;

· identifiers with meaningful names;

· objects that are clearly separated and have comments for their parameters;

· suitable indentation that illustrates various programming constructs.

Do at least 3 of these well to get a level 3 in this section.

[Variable, 500 – 2 000 lines (SL), 1 000 – 3 000 lines (HL)]

C2 Handling Errors

Detecting and rejecting erroneous data input from the user, and preventing common run-time errors caused by calculations and data-file errors. Your are not expected to detect or correct intermittent or fatal hardware errors such as paper-out signals from the printer or damaged disk drives, or to prevent data loss during a power outage.

You must attempt to trap as many errors as possible. The documentation in the

dossier can take a variety of forms e.g. you could highlight relevant comments within the program listing or produce a table with two columns, one that identifies any error possibilities, and one that shows the steps taken to trap the errors. It is not expected that extra output is produced for this section, use what already exists,

[1 - 2 pages]

D1 Annotated Hard Copy

We will run the program together to confirm that it functions, and that it

produces the hard copy of the test output submitted in this section.

The hard copy of test output should also demonstrate that the program fulfils the criteria for success. The output must be annotated (this may be done by hand).

Hard copy output from one or more sample runs should be included to show that the different branches of the program have been tested; testing one set of valid data will not be sufficient. The hard copy submitted should demonstrate the program’s responses to inappropriate or erroneous data, as well as to valid data. Thus the usefulness of the error-handling routines should become evident. While at least one complete test run must be included in the dossier, it is not necessary that the hard copy reflect every key stroke of every test run. Cutting and pasting of additional test runs should be done to illustrate the testing of different aspects of the program.

All test runs should be annotated in such a way that you are stating what aspect of the program is being tested. Sample output must never be altered by hand, erased or covered up. Sample output can be “captured” and combined electronically with explanatory annotations into a single document. However, it is forbidden to alter or reformat sample output in any fashion (except to add page

numbers or annotate in order to highlight user friendliness or error-handling facilities), especially if these alterations would give an unrealistic impression of the performance of the program. For example, lining up text that was not originally aligned, adding colour or other special effects, changing incorrect numerical output, erasing evidence of errors are not allowed.

[Variable number of pages]

Documentation of Mastery Aspects

You must demonstrate mastery of various aspects of Java by documenting evidence in the program dossiers. A good approach is to cross reference the following lists with line numbers in the code listing.

Standard Level (10 out of 15 for maximum):

1. Arrays

2. User-defined objects

3. Objects as data records

4. Simple selection (if – else)

5. Complex selection (nested if, if with multiple conditions or switch)

6. Loops

7. Nested loops

8. User-defined methods

9. User-defined methods with appropriate parameters

10. User-defined methods with appropriate return values

11. Sorting

12. Searching

13. File I/O

14. Use of additional libraries (e.g. utilities and graphical libraries)

15. Use of sentinels or flags

Higher Level (10 out of 19 for maximum)

1. Adding data to an instance of the RandomAccessFile class by direct manipulation of the file pointer using the seek method.

2. Deleting data from an instance of the RandomAccessFile class by direct manipulation of the file pointer using the seek method.

3. Searching for specified data in a file.

4. Recursion

5. Merging two or more sorted data structures

6. Polymorphism

7. Inheritance

8. Encapsulation

9. Parsing a text file or other data stream

10. Implementing a hierarchical composite data structure.

11. The use of any five standard level mastery factors—this can be applied only once.

12. Up to four aspects can be awarded for the implementation of abstract data types

13. Use of additional libraries (such as utilities and graphical libraries)

14. Inserting data into an ordered sequential file without reading the entire file into RAM.

15. Deleting data from a sequential file without reading the entire file into RAM.

16. Arrays of two or more dimensions.

[2 pages]

D2 Evaluation of Solutions

The evaluation/conclusion section should be a critical analysis of the resulting solution. Effectiveness should be discussed in relation to the original description of the problem and the criteria for success. Efficiency may be discussed in general terms e.g. BigO notation is not required. Suggested improvements and possible extensions should be realistic, for example suggestions should not include statements such as “the program would be a lot better if it incorporated some artificial intelligence techniques such as speech recognition and natural language parsing”

The evaluation/conclusion should include reflections on the effectiveness of the programmed solution of the original problem. It should discuss answers to the following questions.

· Did it work?

· Did it address the criteria for success?

· Did it work for some data sets, but not others?

· Does the program in its current form have any limitations?

· What additional features could the program have?

· Was the initial design appropriate?

A thorough evaluation should also discuss possible future enhancements that could be made to the program.

[2 pages]

